Tabel Kebenaran Gerbang Logika



Tabel Kebenaran Dari Gerbang Nor Zona Elektro

Materi Dasar Logika Informatika [Tabel kebenaran]

LOGIKA INFORMATIKA

Logika dan Pernyataan

1.  Logika

2.  Pernyataan (Proposisi)

3.  Penghubung Kalimat Dan Tabel Kebenaran

4.  Ingkaran (Negasi) Suatu Pernyataan,Konjungsi,Disjungsi      dan implikasi. 5.  Invers,konvers,dan kontraposisi

1.    LOGIKA
     Logika Informatika Logika berasal dari bahasa Yunani, yaitu logos yang artinya kata, ucapan atau alasan. Jadi, logika adalah ilmu untuk berfikir dan menalar dengan benar Istilah-istilah logika Ada beberapa istilah yang akan digunakan dalam logika informatika yaitu :
  • Premis : yaitu sebuah pernyataan
  • Argumen : usaha untuk mencari kebenaran dari premis berupa kesimpulan
  • Konklusi : Kesimpulan

2.    PERNYATAAN (PROPOSISI)

Kata merupakan rangkaian huruf yang mengandung arti, sedangkan kalimat adalah kumpulan kata yang disusun menurut aturan tata bahasa dan mengandung arti. Di dalam matematika tidak semua pernyataan yang bernilai benar atau salah saja yang digunakan dalam penalaran. Pernyataan disebut juga kalimat deklaratif yaitu kalimat yang bersifat menerangkan. Disebut juga proposisi.

Pernyataan/ Kalimat Deklaratif/ Proposisi adalah kalimat yang bernilai benar atau salah tetapi tidak keduanya.

Contoh :

  1. Yogyakarta adalah kota pelajar (Benar).
  2. 2+2=4                                     (Benar).

Tidak semua kalimat berupa proposisi

Contoh :

  1. Dimanakah letak pulau bali?.
  2. Pandaikah dia?.

#penalaran deduktif

penalaran yang didasarkan premis-premis yang diandaikan benar untuk menarik kesimpulan.

contoh: 

1. semua mahasiswa baru mengikuti ospek.

2. wulandari adalah mahasiswa baru.

kesimpulannya : wulandari mengikut ospek.

#penalaran induktif

penalaran yang didasarkan pada premis-premis yang bersifat faktual untuk menarik kesimpulan yang bersifat umum.

contoh:

premis 1          : ayam  1   berkembang biak dengan telur

premis 2          : ayam  2   berkembang biak dengan telur

premis 3          : ayam  3   berkembang biak dengan telur

...

...

...

premis 50        : ayam 50  berkembang biak dengan telur

kesimpulannya : semua ayam berkembang biak dengan telur

Pernyataan:

  • Pernyataan adalah kalimat yang mempunyai nilai kebenaran (salah/benar)
  • Pernyataan yang tidak mengandung kata hubung kalimat,disebut pernyataan primer/tunggal/atom. Sedangkan pernyataan yang mengandung satu atau lebih kata hubung kalimat,disebut pernyataan majemuk.
preposisi dilambangkan dengan huruf kecil p,q,r,s,... contoh: p : 13 adalah bilangan ganjil q : soekarno adalah alumni UGM r :  ayam adalah binatang unggas s : 2+2=4

3. PENGHUBUNG KALIMAT DAN TABEL KEBENARAN

KATA HUBUNG KALIMAT

Simbol

Arti

Bentuk

   ¬/~

Tidak/Not/Negasi

Tidak………….

   ^

Dan/And/Konjungsi

……..dan……..

      v

Atau/Or/Disjungsi

………atau…….

     =>

Implikasi

Jika…….maka…….

   < =>

Bi-Implikasi

……..bila dan hanya bila……..

TABEL KEBENARAN

p

q

~p

~q

p^q

pvq

p=>q

p <=>q

B

B

S

S

B

B

S

B

B

S

S

B

S

B

B

S

S

B

B

S

S

B

B

B

S

S

B

B

S

S

S

B

4.  INGKARAN (NEGASI) SUATU PERNYATAAN,KONJUNGSI,DISJUNGSI DAN IMPLIKASI

A. NEGASI (INGKARAN)

Jika p adalah “ Semarang ibukota Jawa Tengah”, maka ingkaran atau negasi dari pernyataan p tersebut adalah ~p yaitu “ Semarang bukan ibukota Jawa Tengah” atau “Tidak benar bahwa Semarang ibukota Jawa Tengah”. Jika p diatas bernilai benar (true), maka ingkaran p (~p) adalah bernilai salah (false) dan begitu juga sebaliknya.

Contoh:

a. p: semua siswa punya almamater    ~ p : beberapa siswa tidak punya almamater

b.  q  : uki anak yang pandai

   ~ q : uki bukan anak yang pandai

B. KONJUNGSI

Konjungsi adalah suatu pernyataan majemuk yang menggunakan penghubung “DAN/AND” dengan notasi “^

Contoh:

a.   p: Fahmi makan nasi

      q:Fahmi minum kopi

      Maka p^q : Fahmi makan nasi dan minum kopi b.   p: Aan anak yang pemalas       q: Aan anak yang ngantukan         Maka p^q   : Aan anak yang pemalas dan ngantukan

Pada konjungsi p^q akan bernilai benar jika baik p maupun q bernilai benar. Jika salah satunya (atau keduanya) bernilai salah maka pÙq bernilai salah.

C. DISJUNGSI

Disjungsi adalah pernyataan majemuk yang menggunakan penghubung “ATAU/OR” dengan notasi “v”.

Kalimat disjungsi dapat mempunyai 2 arti yaitu :

a.    INKLUSIF OR

Yaitu jika “p benar atau q benar atau keduanya true”

Contoh  :

p : 7 adalah bilangan prima

q : 7 adalah bilangan ganjil

p v q : 7 adalah bilangan prima atau ganjil

Benar bahwa 7 bisa dikatakan bilangan prima sekaligus bilangan ganjil.

b.    EKSLUSIF OR

Yaitu jika “p benar atau q benar tetapi tidak keduanya”.

Contoh :

     p : Saya akan melihat pertandingan bola di TV.

     q : Saya akan melihat pertandingan bola di lapangan.

     p v q : Saya akan melihat pertandingan bola di TV atau lapangan.

Hanya salah satu dari 2 kalimat penyusunnya yang boleh bernilai benar yaitu jika “Saya akan melihat pertandingan sepak bola di TV saja atau di lapangan saja tetapi tidak keduanya.

D. IMPLIKASI

Misalkan ada 2 pernyataan p dan q, untuk menunjukkan atau membuktikan bahwa jika p bernilai benar akan menjadikan q bernilai benar juga, diletakkan kata “JIKA” sebelum pernyataan pertama lalu diletakkan kata “MAKA” sebelum pernyataan kedua sehingga didapatkan suatu pernyataan majemuk yang disebut dengan “IMPLIKASI/PERNYATAAN BERSYARAT/KONDISIONAL/ HYPOTHETICAL dengan notasi “ =>”.

Notasi pÞq dapat dibaca :

  1. Jika p maka q
  2. q jika p
  3. p adalah syarat cukup untuk q
  4. q adalah syarat perlu untuk p
       contoh          1.                   p : Pak Ali adalah seorang haji.

        q : Pak Ali adalah seorang muslim.

  p => q : Jika Pak Ali adalah seorang haji maka pastilah dia seorang  muslim. 2.                    p : Hari hujan.                         q : Adi membawa payung.                        

Benar atau salahkah pernyataan berikut? a. Hari benar-benar hujan dan Adi benar-benar membawa payung. b. Hari benar-benar hujan tetapi Adi tidak membawa payung. c. Hari tidak hujan tetapi Adi membawa payung. d. Hari tidak hujan dan Adi tidak membawa payung.

1.1       KONVERS, INVERS, DAN KONTRAPOSISI

Perhatikan pernytaan di bawah ini! ~  ^  v  => <=>

“Jika suatu bender adalah bendera RI maka ada warna merah pada bendera tersebut”

Bentuk umum implikasi di atas adalah “p => q” dengan

p : Bendera RI

q : Bendera yang ada warna merahnya.

Dari implikasi diatas dapat dibentuk tiga implikasi lainnya yaitu :

1.   KONVERS, yaitu q => p

Sehingga implikasi diatas menjadi :

“ Jika suatu bendera ada warna merahnya, maka bendera tersebut adalah bendera RI”.

2.   INVERS, yaitu ~p => ~q

Sehingga implikasi diatas menjadi :

“ Jika suatu bendera bukan bendera RI, maka pada bendera tersebut tidak ada warna merahnya”.

3.   KONTRAPOSISI, yaitu ~q => ~p

Sehingga implikasi di atas menjadi :

“ Jika suatu bendera tidak ada warna merahnya, maka bendera tersebut bukan bendera RI”.

Suatu hal yang penting dalam logika adalah kenyataan bahwa suatu implikasi selalu ekuivalen dengan kontraposisinya, akan tetapi tidak demikian halnya dengan  invers dan konversnya.

contoh lainnya:

p: lumba-lumba adalah binatang mamalia

q: lumba-lumba adalah binatang menyusui

Implikasi:

jika lumba-lumba adalah binatang mamalia maka lumba-lumba adalah 

binatang yang menyusui.

konvers:

jika lumba-lumba adalah binatang menyusui maka lumba-lumba adalah binatang mamalia.

invers  :

jika lumba-lumba bukan binatang mamalia maka lumba-lumba bukan binatang menyusui

kontraposisi:

jika lumba-lumba bukan binatang menusui maka lumba-lumba bukan binatang mamalia.

Hal ini dapat dilihat dari tabel kebenaran berikut

p

q

~p

~q

implikasi    p=>q

konvers  q => p

   invers ~p => ~q

kontraposisi ~q => ~p

B

B

S

S

B

B

B

B

B

S

S

B

S

B

B

S

S

B

B

S

B

S

S

B

S

S

B

B

B

B

B

B

Perangkai logika Berikut adalah peringkai logika informatika Konjungsi (And) dengan symbol “ ^ ” Tabel Kebenaran :

Konklusi/Kesimpulan akan bernilai benar/ true  (T) jika kedua kondisi (A dan B) bernilai benar (T) . ——————————————————————————– Disjungsi (Or) dengan symbol “ v “ Tabel Kebenaran :

Konklusi/Kesimpulan akan bernilai salah/ false  (F) jika kedua kondisi (A dan B) bernilai salah (F) . ————————————————————————————– Negasi (Not) Tabel Kebenaran :

  • not A adalah kebalikan dari premis A, dan
  • not not A adalah kebalikan dari premis not A
(Maaf kawan, simbol not gak kebaca di blog, liat di gambar aja ya simbolnya ;;)) ——————————————————————————- Implikasi (If ..then) dengan symbol (->) Tabel Kebenaran :

Kondisi akan bernilai salah (F) jika pernyataan pertama (A) bernilai (T) dan pernyataan kedua (B) bernilai salah (F) ——————————————————————————————— Biimplikasi/ Ekuivalensi (If..then..if) dengan symbol “ <-> “ Tabel Kebenaran :

Jika premis pertama dan kedua ( A dan B ) bernilai sama maka A <->B akan bernilai benar (T) ——————————————————————————————- NAND/ Not And dengan symbol “ | “ Tabel Kebenaran :

Fungsi NAND adalah kebalikan dari fungsi AND “ ^ “ ————————————————————————————————- NOR/ Not Or Tabel Kebenaran :

Fungsi NOR adalah kebalikan dari fungsi OR “ v ” ———————————————————————————————- XOR/ Exclusive Or Tabel Kebenaran :

Fungsi XOR adalah kebalikan dari fungsi If..then..if atau biimplikasi “ <-> “

Gallery Tabel Kebenaran Gerbang Logika

Logika Bagian 1 Tabel Kebenaran Dan Gerbang Logika Dadan

Gerbang Gerbang Dasar Logika Blog Pelajaran

Pengertian Gerbang Logika Dasar Dan Jenis Jenisnya

Rangkaian Logika Y Output A Input

Macam Gerbang Logika Ajat Didik Budiansyah

Perencanaan Pembelajaran Rpp Ivon

Contoh Soal Gerbang Logika

Buatlah Tabel Kebenaran Untuk Gerbang Logika Nand

Doc Gerbang Logika Eka Ashar Academia Edu

Gerbang Logika Dan Gerbang Tabel Kebenaran Gambar Png

Gerbang Logika Dasar Maharadisjuanda Blog

Buatlah Tabel Kebenaran Untuk Gerbang And Dengan 3 Input

Macam Gerbang Logika Ajat Didik Budiansyah

Gerbang Logika

Gerbang Logika Tabel Kebenaran Dan Contoh Soal Sang Juara

Pengertian Dan Macam Macam Rangkaian Pengolah Data Katakoala

Menentukan Tabel Kebenaran Dari Output Rangkaian Universal Gerbang Logika

Dongan Blog Menentukan Ouput Tabel Kebenaran Pada Kombinasi

Gerbang Logika Dasar Docsity

Jenis Jenis Gerbang Logika Beserta Simbol Tabel Kebenaran

Gerbang Logika Not Pembelajaran Online Guru Elektronik

Pengertian Dan Contoh Gerbang Logika Nand Not And Zikri

Ppt Elektronika Dan Instrumentasi Elektronika Digital 2


Comments